永远测不准的量子 量子特性让测量精度不断提高
2021-02-04 09:28:01 来源: 科技日报
在经典力学里,物体的状态可以被精确测量,并且观察和测量对观察对象的干扰可以忽略不计,但在微观世界,干扰是无论如何都不能忽略的。对量子进行测量,就会发现测量的结果完全随机,得到的结果永远不同。
在量子物理学中,某些东西从严格意义上说是不可知的。例如,你永远不可能同时知道电子的位置和动量,在硬币落下之前,你也不知道哪个面会朝上。在测量之前,电子的位置、动量等状态,是各种可能状态的叠加;在硬币落地静止之前,它的状态是“正面朝上”和“背面朝上”两种状态的叠加,仅当测量时,它才会选择一种确定的状态呈现出来。
在测量的过程中瞬间发生随机突变,是量子力学中一大神奇之处,这也意味着,测量在量子力学中的重要性,比在经典力学中重要得多。
世界上最精密的测量仪器当属激光干涉仪引力波天文台(LIGO),人类利用它首次观测到了引力波事件,代表了人类当前最高的测量水平。为了进一步提高测量精度,科学家们不约而同地把目光聚向基于量子力学的量子精密测量技术。这是一种怎样的技术呢?
经典测量——你测或者不测,我都不增不减
新冠疫情出现后,一个人体指标受到前所未有的关注,那就是体温,对于人体温度的测量就是一种物理量测量。
没有测量就没有科学。现代科学是在“假设—检验—模型—理论”的循环过程中建立和发展起来的。把测量精度提高一个数量级往往会导致新的物理发现。物理量单位的定义、测量值的精度、物理常数的大小及制约关系是否成立,成为了检验物理定律的关键。
在经典力学里,物体的状态可以被精确测量,并且观察和测量对观察对象的干扰可以忽略不计,但在微观世界,干扰是无论如何都不能忽略的。
实际上,对任何物理量的测量都会伴随着噪声,这会干扰我们对系统的精确控制。通常认为,经典噪声主要来源于技术缺陷、仪器不理想等因素,随着科学技术的发展,系统的经典噪声大大降低,常常可以忽略不计。
根据数学上的中心极限定理,重复N次(N远大于1)独立的测量,其测量的结果满足正态分布,而其测量的误差就可以达到单次测量的1/公式。因此,测量精度也就提高到单次测量的公式倍。这也就是经典力学框架下的测量极限——散粒噪声极限。
经典测量所能达到的最小噪声即散粒噪声,对应着测量的标准量子极限。1927年,海森堡提出了量子力学中著名的测不准原理,他认为,粒子的位置与动量不可同时被确定,位置测定得越准确,动量的测定就越不准确,反之亦然。
海森堡不确定性原理似乎是遮掩这些可观测量真实数值的一层模糊的面纱。其实,这是表示这些变量只能定义到海森堡极限所允许的精度。量子噪声与经典噪声的区别,在于如热噪声、散粒噪声等都与温度相关——温度越低,噪声越低。当温度达到绝对零度时,经典噪声将完全消失。但是,你却无法消除量子噪声——因为根据量子力学原理,空间中总是充满着波动的能量,整个宇宙中都活跃着量子噪声。
量子测量——既不是1也不是2,既是1又是2
量子理论在揭示和应用微观世界规律方面取得了巨大成功,这也被称为第一次量子革命,由此衍生的诸多重大发明,主要是建立在对量子规律宏观体现的应用层面。
随着科学家们对量子叠加和量子纠缠等特性进行深入研究,人类已经能够直接对单个量子客体(光子、原子、分子、电子等)的状态进行主动制备、精确操纵和测量,从而能够以一种全新的“自下而上”的方式来利用量子规律认识和改造世界。量子调控和量子信息技术的迅猛发展标志着第二次量子革命的兴起。
我们要认识和了解量子,就必须知道量子物理状态,比如它是如何运动的,能量有多大等。如果对量子进行测量,就会发现测量的结果是完全随机的。这是因为,量子有着许多不同于宏观物理世界的奇妙现象和特性,比如量子叠加。
“在我们生活的宏观世界里,量子叠加现象是无法存在也无法维持的。在宏观的经典世界
里,1就是1,2就是2。而在微观的量子世界中,一个状态可以存在于1和2之间,它既不是1,也不是2,但它既是1,又是2。”中国科学技术大学上海研究院副研究员张文卓说。
“这就好比孙悟空的分身术。一个孙悟空可以同时出现在多个地方,孙悟空的各个分身就像是它的叠加态。”中科院院士、中国科学技术大学教授潘建伟解释道,“在日常生活中,一个人不可能同时出现在两个地方。但在量子世界里,作为一个微观的客体,它能够同时出现在许多地方。”
宏观经典世界遵照的是经典力学规律,而在量子世界中,遵照的则是量子力学规律。在量子力学里,光子(量子的一种)可以朝着某个方向进行振动,叫做偏振。因为量子叠加,一个光子可以同时处在水平偏振和垂直偏振两个量子状态的叠加态。科学实验证明,因为量子叠加效应的存在,一经测量就会破坏或改变量子的状态。因此,如果拿一个仪器对量子进行测量,就会发现测量的结果完全随机,对于相同状态,无论观察得多仔细,得到的结果永远不同。
三把“尺子”——量子特性让测量精度不断提高
由于量子力学测不准原理的限制,测量精度不可能无限制地提高,这个最终的极限被称为海森堡极限。
但是,人们可以通过两种方式来提高测量精度:第一种是制备和利用分辨率更高的“尺子”;第二种方式是通过多次重复测量减少测量误差,提高测量精度。近年来,人们发现利用量子力学的基本属性,例如量子相干、量子纠缠、量子统计等特性,可以实现突破经典散粒噪声极限限制的高精度测量,这就相当于找到了一把高灵敏度的量子“尺子”。
按照对量子特性的应用,量子测量也有了三把“尺子”,第一把“尺子”是基于微观粒子能级测量;第二把“尺子”是基于量子相干性测量;第三把“尺子”是基于量子纠缠进行测量。
第一把“尺子”从上世纪50年代就逐步在原子钟等领域开始应用。根据玻尔的原子理论,原子从一个“能量态”跃迁至低的“能量态”时便会释放电磁波。这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。
1967年,国际计量大会依据铯原子的振动而对秒做出了重新定义,即铯133原子基态的两个超精细能阶间跃迁对应辐射的9192631770个周期的持续时间。这是量子理论在测量问题上的第一个重大贡献。
量子测量第二把“尺子”是基于量子相干性的测量技术,利用量子的物质波特性,通过干涉法进行外部物理量的测量。现在已经广泛应用于陀螺仪、重力仪、重力梯度仪等领域。例如,冷原子干涉量子陀螺仪由于其超高精度和超高分辨率的优异特性,可以应用于高灵敏导航系统等。
量子测量的最后一把“尺子”——基于量子纠缠的测量技术。理论上,如果让N个量子“尺子”的量子态处于一种纠缠态上,外界环境对这N个量子“尺子”的作用将相干叠加,使得最终的测量精度达到单个量子“尺”的1/N。该精度突破了经典力学的散粒噪声极限,是量子力学理论范畴内所能达到的最高精度——海森堡极限。
2018年,中国科大郭光灿院士领导的研究组首次在国际上逼近了最优海森堡极限。而就在2021年1月,郭光灿院士领导的研究组同时实现了三个参数达到海森堡极限精度的测量。目前,科学家们已经在光子、离子阱和超导等物理系统中实现了对相位测量等物理量测量的实验演示,突破了经典测量极限,逼近或达到海森堡极限。记者吴长锋
为您推荐
精彩放送
热门文章
-
舆情预警丨搜于特:实控人及其一致行动人合计约2.16亿股持股被司法冻结 占公司总股本比例7.08%
-
热推荐:中科江南:已就数字人民币在财政国库资金支付领域应用进行试点
-
今日报丨超500家企业签约参展 第六届进博会公布首批参展商名单
-
环球通讯!交易所债券收盘:地产债多数下跌 “21旭辉01”跌超4%
-
环球观焦点:舆情预警丨如皋沿江开投:企业本部涉及重大诉讼
-
世界热资讯!小米汽车数字钥匙专利公布,可提升设备续航
-
双枪科技投资设立自动化设备新公司
-
世界头条:山高环能于天津投资新设生物能源销售公司
-
天天讯息:工信部:2022年全国家用电冰箱产量8664.4万台 同比下降3.6%
-
微信已全面支持“小号” 全量开放辅助账号注册功能
-
自然资源部:取消集中供地制度系误读
-
机构:2022年Q4苹果全球智能手机市场份额达到历史最高水平
精彩图片
-
成本大减!新一轮的旗舰大战也将在即将到来的9月正式拉开帷幕
-
博览会开幕 中国首款具有自主知识产权的国产通用型科学计算软件正式发布
-
技术下降!Intel独立显卡驱动一次评测就发现43个Bug
-
高性能的台式机彻底告别“光污染” 雷克沙推出简洁纯白外观设计
-
韩国媒体率先报道:三星电子236层NAND闪存预计年内开始生产 市场竞争更激烈
-
新科技!苹果正在积极研发某种形式的AR/VR头显或智能眼镜
-
谷歌测试开展新功能 向用户展示哪些云流媒体服务拥有特定的视频游戏
-
支付宝积极响应国家为小微降费的政策号召 一年降费让利近80亿
-
京东汽车就与浦林成山旗下新能源车轮胎品牌浦林达成战略合作 助力轮胎“电动化转型”
-
苹果新专利公布:暗示未来 iPhone手机或许有陶瓷材质版
-
盖茨和韩国能源供应商SK共同牵头 其中SK投资2.5亿美元
-
海底捞早已经捞不动了 据统计上半年最高亏损达2.97亿
热文
-
谷歌母公司下季度将调整财报:AI研究部门将单独披露
-
我国新增18处国际重要湿地 总数达82处 面积764.7万公顷
-
激发国企科技创新活力
-
爱一个人是什么感觉的说说_爱一个人是什么感觉
-
安徽省有哪些市区县名称_安徽省有哪些市区县
-
北京海淀区GDP首破万亿元大关
-
广东移动大数据解码春节:跨省出行热度高 莞深空城率超70%
-
世界动态:挪威称雷克萨斯的自费混合广告误导
-
今日要闻!又一批跨国公司地区总部和研发中心落户上海
-
环球微头条丨科大讯飞与杭州市签署全面战略合作协议
-
奥维睿沃:海信系电视2022年12月单月出货量居全球首位
-
南财投资日历(2月3日)
-
珠海:涉及知名大盘!11家房企、中介因违法违规被查处
-
世界焦点!证监会:更好保护中小投资者合法权益 树牢“大投保”理念
-
环球消息!Q4“固收+权益”理财定价下行明显,近6月收益猛跌101BP丨机警理财日报(2月2日)
-
证监会:稳妥有序化解私募基金、地方交易场所、债券违约等重点领域风险
-
当前热文:恒瑞医药人事变动频繁?董事长孙飘扬回应
-
银川优化生育措施征求意见:提高二三孩生育住院分娩医疗费报销比例
-
热门:国家卫健委发布国家血液病医学中心和国家血液病区域医疗中心设置标准
-
环球观焦点:长三角G60科创走廊:锚定“科创+产业+金融+人才”高水平融合发展
-
北京:到2025年新孵化国家高新技术企业2000家
-
环球简讯:《煤矿安全改造中央预算内投资专项管理办法》发布
-
美国联邦快递管理层将裁员超10%
-
巴比食品:2022年净利润2.22亿元 同比下降29.21%
-
空客与卡塔尔航空就A350订单纠纷达成和解
-
动态焦点:国家能源局负责人会见香港中电总裁
-
全球快资讯:北京这个区 GDP总量首次突破一万亿元!
-
天天快报!高质量发展 | 亮出“作战图” 跑出“加速度”
-
北京关停三里屯酒吧街?官方回应
-
中汽协:2022年全国汽车商品累计进出口总额为2486.5亿美元 同比增长11.7%
-
龙虎榜丨中国长城今日涨停,上榜营业部席位全天成交2.83亿元
-
立讯精密董事长王来春:未来20年立讯要有30%产品进入全球行业无人区
-
当前观点:ChatGPT热度爆棚 谷歌开测“学徒巴德”等多款竞品
-
环球即时:沪硅产业:向专业投资者公开发行不超过13.4亿元科技创新公司债券申请获批
-
天天微资讯!商务部:继续稳定和扩大汽车消费 支持新能源汽车消费
-
新年“开门红” 江苏中欧班列今年首月开行突破200列
-
舆情预警 | 小米汽车设计泄密供应商被处罚100万
-
股票破位怎么办?股票破位必须止损吗?
-
股票一字线会持续几天?股票丁字线说明什么?
-
每日速递:商务部:研究制定海南自由贸易港禁止、限制进出口货物物品清单
-
焦点短讯!舆情预警 | 交通银行四川省分行原党委委员、副行长刘志刚被“双开”
-
股票分红对以后走势有没有影响?分红和股票涨跌有关系吗?
-
环球热点!舆情预警丨云天化:从未在任何网络平台开展众筹集资
-
【环球播资讯】商务部:研究制定海南自由贸易港禁止、限制进出口货物物品清单
-
环球简讯:上海浦东GDP突破1.6万亿元
-
博亚精工:公司目前与成飞集团无业务往来
-
【天天报资讯】商务部:2022年社会消费品零售总额44.0万亿元,与2021年基本持平
-
世界最资讯丨银保监会就人身保险公司分类监管办法业内征求意见 涉及高风险业务、分支机构和非标资产投资
-
商务部:2023年要强化贸易促进 合理扩大进口
-
每日看点!沪指震荡收涨0.02% 半导体和白酒板块表现强势